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Invasion percolation is often used to simulate capillary-dominated drainage and imbibition in pore networks.
More than a decade ago it was observed that the part of a pore network that is involved in an invasion bond
percolation is a minimum-weight spanning tree of the network, where the weights indicate resistances associ-
ated with the bonds. Thus, one can determine a minimum-weight spanning tree first and then run the invasion
bond percolation on the minimum-weight spanning tree. The time complexities of the two steps are
O(m��m ,n�) and O�n�, respectively, where m is the number of edges, n is the number of vertices, and ��· , ·�
denotes the inverse Ackermann function. In this paper we �1� formulate the property of minimum-weight
spanning trees that justifies the two-step approach to invasion bond percolation, �2� extend the two-step
approach to invasion site percolation, and �3� further extend it to simulations of drainage �imbibition� that
include trapping of the wetting �nonwetting� phase. In case of imbibition we also take snap-off into account. As
a consequence, all these simulations can now be done in O(m��m ,n�).
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I. INTRODUCTION

Multiphase flow is a process that may occur in both natu-
ral and manufactured porous media, e.g., when �1� water
flows in the partially saturated subsurface �the vadose zone�,
�2� oil is recovered from its natural reservoirs via water
flooding, or �3� water flows in polymer-electrolyte-
membrane �PEM� fuel cells. Pore network models have been
used extensively to study pore-scale characteristics of such
flows and to then draw conclusions about macroscale flow
behavior �1,2�. Pore networks represent real porous media by
sites �the pore bodies� which are connected via bonds �pass-
ing through the pore throats�. Simple rules, which account
for local pore size, mass conservation, Poiseuille’s equation
for the viscous pressure drop �and extensions to noncircular
pore throats or bonds�, and capillary physics, are then used to
model multiphase flow in a network. As a result, network
models generally allow simulation of larger spatial domains
than approaches that solve the Navier-Stokes equation or a
lattice-Boltzmann equation.

Wilkinson and Willemsen �3� coined the term invasion
percolation �IP� for network �lattice� models of two-phase
flow, assuming that the flows are dominated by capillary
forces and hence neglecting viscous forces. Two flavors of IP
exist. Invasion bond percolation �IBP� describes the dis-
placement of a wetting by a nonwetting fluid �drainage�,
while invasion site percolation �ISP� describes the displace-
ment of a nonwetting by a wetting fluid �imbibition� �4�. In
both IBP and ISP, the invading fluid advances at the location
on the front between the two fluids where the resistance is
minimal.

To specify what “minimal resistance” means during drain-
age, we denote by pd�t� the critical capillary pressure �CP�
between the two fluids at which nonwetting fluid invades a

pore throat t �and promptly the next pore body�, provided
that exactly one of the two pore bodies separated by t is filled
with nonwetting fluid. In IBP, the critical CP pd is inversely
proportional to the size of t, proportional to the interfacial
tension between the two fluids, and a function of contact
angle.

To specify what minimal resistance means during imbibi-
tion, we denote by pi�b� the critical CP between the nonwet-
ting and the wetting fluids at which the wetting fluid invades
a pore body b, provided that at least one of the pore throats
incident on b is filled with wetting fluid. In ISP, the critical
CP pi�b� is inversely proportional to the size of b, propor-
tional to the interfacial tension between the two fluids, and a
function of contact angle, but it also depends on from how
many and which throats the wetting phase seeks to invade
the pore body b �5�. Generally, “cooperative pore filling”
tends to increase the pi values. There remains an issue about
how one should exactly calculate pi because of the complex
shape of pores and the multiple fluid-fluid interfaces that
merge in a complicated fashion during cooperative pore fill-
ing by wetting phase. Hence, network models exist that ei-
ther do �6–8�, in a typically heuristic manner, or do not
�9,10� account for the effects of cooperative pore filling. As
in �11�, we call the pressure difference between the nonwet-
ting phase and the wetting phase reservoir the external CP.

Minimal resistance during drainage �imbibition� now
means that pd �pi� is minimal �maximal� as compared to all
pore throats �pore bodies� that are filled with the displaced
fluid and that are incident on �adjacent to� the front. The
external CP at which a given pore throat �pore body� in a
pore network is invaded by the nonwetting �wetting� phase is
determined by a path of minimal resistance from the nonwet-
ting �wetting� phase reservoir to the pore throat �pore body�.

More than a decade ago, Barabási �12� observed that run-
ning an IBP simulation �i.e., a primary drainage simulation�
on a lattice amounts to constructing a minimum-weight span-
ning tree �MWST� �13,14� of the lattice with respect to the
resistance values associated with the bonds of the lattice.
This fact is very important, as it allows simulating drainage
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much more effectively than algorithms that iteratively search
the moving front between the invading and displaced fluids
for the bond with the minimal resistance. Computational ef-
ficiency is crucial when networks are sought to span repre-
sentative elementary volumes �15� or when they are used to
determine fractal dimensions of sample spanning clusters,
backbones, and minimal paths �4,16,17�, because these prop-
erties only very slowly approach their asymptotic limits as
the network size increases.

The objectives of this paper are �1� to rigorously show
that primary drainage can indeed be simulated in pore net-
works by using a MWST; and �2� to develop a MWST
method to simulate primary imbibition. In each case we
demonstrate how one can take trapping into account. In the
case of imbibition we also include snap-off �18,5�, i.e., the
imbibition of narrow ducts by the wetting phase due to the
thickening of the wetting phase films.

Our method for simulating drainage �imbibition� works

only if the pd �pi� values are known a priori �before the flow
simulation�. In particular, we do not take cooperative pore
filling into account when simulating imbibition.

In the next section, we will introduce the formalism nec-
essary to describe our method and prove its correctness.
Then, we work out the graph-theoretical basics needed to
relate the MWSTs to the flow simulations. After that, we
show how drainage and imbibition can be modeled using
MWSTs.

II. SPANNING TREES OF PORE NETWORKS

In this paper, a pore network takes the form of an undi-
rected connected graph G= �V ,E� with vertex set V and edge
set E �19�. We think of the vertices �edges� in V �E� as pore
bodies �connections of pore bodies via their interfaces
=pore throats�. The vertices and edges are equipped with
attributes given by the following functions.

�a� pd :E�R, where pd�e� indicates the CP that is critical
for drainage through the pore throat represented by an edge
e, provided that exactly one of the pore bodies represented
by the end vertices of e is filled with nonwetting phase.

�b� pi :V�R, where pi�v� indicates the CP that is critical
for imbibition of the pore body bv represented by a vertex v,
provided that at least one neighbor of bv is filled with wetting
phase.

We adhere to the general idea that a pore body bv repre-
sented by a vertex v of G is wider than the pore throats
between bv and neighboring pore bodies, i.e., pi�v�� pd�ev�
for all ev incident on v. We specify the reservoir of the non-
wetting �wetting� phase by means of a subset VN �VW� of V
�see Fig. 1�a��.

In order to get a handle on the reservoirs we represent
them by new vertices uN and uW, respectively. We then link
uN �uW� to all vertices in the nonwetting �wetting� phase
reservoir, the new edges forming the set EN �EW� �see Fig.
1�a��. The extended graph thus obtained is the graph G+ with
vertex set V+ and edge set E+ formally defined through

V+: = V � �uN,uW� , �1�

EN: = ˆ�uN,v� with v � VN‰ , �2�

EW: = ˆ�uW,v� with v � VW‰ , �3�

E+: = E � EN � EW, �4�

G+: = �V+,E+� . �5�

A spanning tree of G+= �V+ ,E+� is a subgraph T= �VT ,ET� of
G+ that �1� is a tree, i.e., is connected and contains no cir-
cuits, and �2� contains all vertices of G+, i.e., VT=V+. For an
example, look at G+ depicted in Fig. 1�a� and the spanning
tree of G+ depicted in Fig. 1�b�.

In this paper, we express the resistances of the pore
throats �pore bodies� to the invasion of the nonwetting �wet-
ting� phase through weight functions � :E+�R. There are
no weights assigned to the vertices. The �total� weight of a
spanning tree T= �V+ ,ET� with respect to ��·�, also referred
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FIG. 1. Drainage without trapping. �a� A graph G+= �V+ ,E+�.
The numbers indicate values of pd�·�. �b� MWST of G+ with respect
to �d�·�. The numbers at the edges indicate their �d�·� values, and H
is a number higher than all pd values. �c� The pd

x value of a vertex v
is the maximum of the �d values along the unique path from uN to
v on a MWST of G+ with respect to �d�·�. �d� The pd

x values for all
v�V \VN. They indicate the external CP at which drainage actually
occurs.
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to as the � weight of T, is defined as �e�ET
��e�, and a

MWST of G+ with respect to ��·� is a spanning tree of G+

whose � weight is smaller than or equal to the � weight of
any other spanning tree of G+. The spanning tree in Fig. 1�b�
is minimal with respect to a weight function �d�·� that coin-
cides with pd�·� outside the reservoirs �the �d values of the
other edges are specified in Sec. IV�.

Barabási’s observation that running an IBP simulation
amounts to constructing a MWST now takes the following
form: IBP on G+ can be done by constructing a MWST of G+

with respect to �d�·� and running IBP only on the MWST.
Let us recast our objectives in graph-theoretical terms. We

will derive a weight function �d :E+�R ��i :E+�R� from
the pd �pi� values such that drainage without trapping �imbi-
bition with neither trapping nor snap-off� can be done by �1�
calculating a MWST of G+ with respect to �d�·� ��i�·��, and
�2� traversing the MWST. We then devise a weight function
�d

t �·� ��i
t�·�� such that a traversal of a MWST with respect to

�d
t �·� ��i

t�·�� allows us to take trapping �trapping and snap-
off� into account during drainage �imbibition�. Specifically,
�d

t �·� allows us to locate trapped wetting phase after drain-
age, and �i

t�·� allows us to locate trapped nonwetting phase
after imbibition.

III. WHY MWSTs ARE USEFUL FOR IP

As laid out in the Introduction, the external CP at which a
given pore throat �pore body� in a pore network is invaded
by nonwetting �wetting� phase is determined by a path of
minimal resistance from the nonwetting �wetting� phase res-
ervoir to the pore throat �pore body�. Often, the very large
number of such paths prohibits the testing of them all. If,
however, the paths of minimal resistance are contained in a
certain MWST of the pore network, the paths are unique and
no longer need to be tested. To build such MWSTs we will
exploit a well-known theorem about MWSTs �see Theorem
1� and derive a proposition �see Proposition 1� that relates
minimal resistance on a pore network to resistance on a
MWST of the pore network. We will use the representation
of the pore network by a graph G+, as explained in Sec. II.

Let � be a path on G+ given by a nonempty sequence of
edges e1 , . . . ,ek�E+, let � :E+�R be a weight function, and
let u�v�V+. We then set

Max����: = max���ej�:1 � j � k� , �6�

MinMax��u,v�: = min�Max����:

� is a path from u to v� . �7�

Let the graph T= �V+ ,ET� be a spanning tree of G+

= �V+ ,E+�, and let eT�ET. Removing eT from T splits T into
two trees T1 and T2. Thus, the vertex set V+ of G+ is decom-
posed into vertex sets V1

+ and V2
+. The set of all edges in E+

with one end vertex in V1
+ and the other end vertex in V2

+, a
so-called cocycle �13�, is denoted by E+�T ,eT�. We are now
able to write down an important theorem about MWSTs �see
Theorem 4.3.3 including a proof in �13��.

Theorem 1 (cocycles of MWSTs). Let G+= �V+ ,E+�, and let
the edge weights of G+ be given by a function � :E+�R.
Then, a spanning tree T= �V+ ,ET� of G+ has minimal weight
with respect to ��·�, if and only if the following holds for
each eT�ET:

��eT� � ��f� for all f � E+�T,eT� .

Proposition 1 [MinMax��· , ·� on G+ in terms of Max��·�
on a MWST]. Let T be a MWST of G+ with respect to some
� :E+�R. Furthermore, let u�v�V+, and let �T denote the
unique path between u and v on T. Then, MinMax��u ,v�
=Max���T�.

Proof. Let � be a path between u and v on G+ such that
MinMax��u ,v�=Max����. Furthermore, let eT be an edge
on �T with ��eT�=Max���T� �see Fig. 2�. Removing eT
from T splits T into two trees T1 and T2. Thus, the vertex
set V+ of G+ is decomposed into vertex sets V1

+ and V2
+, where

u is contained in V1
+ and v is contained in V2

+. Hence,
when walking on � from u to v, one traverses an edge
e� with one end vertex in V1

+ and the other end vertex
in V2

+. According to Theorem 1 we have ��eT����e��,
and thus MinMax��u ,v����e�����eT�=Max���T�
�MinMax��u ,v�. �

IV. SIMULATION OF DRAINAGE
WITHOUT TRAPPING

In a real experiment on quasistatic primary drainage, one
starts with a wetting phase saturated porous medium at a low
external CP �often 0� and then gradually and slowly increases
the external CP. Simulating quasistatic primary drainage
through IBP amounts to assuming that, if the external CP has
risen to an intermediate value px, a pore body bv represented
by a vertex v�V \VW has been drained at some point during
the pressure increase to px, if and only if there exists a path
between a vertex in VN and v such that the maximal pd value
of the edges along the path is �px. This, in turn, is equiva-
lent to saying that the external CP at which bv is actually
drained equals MinMax�d

�uN ,v�, where

�d�e�: = �0 if e � EN,

H if e � EW or e = �u,v� with u,v � VN,

pd�e� otherwise,
	

�8�

and H is a number higher than all pd values. We denote the
external CP at which bv is actually drained by pd

x�v�. Due to
Proposition 1, pd

x�v� equals the maximum of all �d values on
the unique path between uN and v on the MWST of G+ with
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FIG. 2. Illustration to proof of Proposition 1.
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respect to �d �for an example see Figs. 1�b� and 1�c��. Hence,
the value pd

x�v� can be determined by simply going from uN
to v along the unique path and updating the maximum of �d
encountered so far. Note that this gives us the pd

x�v� values of
all vertices on the unique path. More generally, any �recur-
sive� traversal of the MWST of G+ with respect to �d that
starts at uN allows us to determine the pd

x�v� values of all
vertices in V \VN. Since in such a traversal each vertex of G+

is visited exactly once, the computational complexity for de-
termining the pd

x�v� values of all vertices in V \VN is O�n�,
where n is the number of vertices in G+.

V. SIMULATION OF DRAINAGE WITH TRAPPING

To simplify our description, we call a vertex v�V dry
�wet�, if the pore body represented by v is filled with non-
wetting �wetting� phase. We first focus on a single wet vertex

v at the interface between the two fluid phases at some time
during drainage. Then, v gets dry, if and only if �1� pd�v�
� px, where px is the external CP, and �2� there exists a path
from v to the wetting phase reservoir along which wetting
phase can escape, i.e., all vertices along the path are wet.

If applied iteratively while the external CP is rising, the
above criterion for a vertex getting dry amounts to a simula-
tion of drainage with trapping of the wetting phase. The fol-
lowing definition of �d

t �·� ensures that the MWST of G+ with
respect to �d

t �·� �see Fig. 3� captures the escape of the wet-
ting phase:

�d
t �e�: = �

H − pd
x�v� if e = �uW,v� ,

H − min�pd
x�u�,pd

x�v�� if e = �u,v�
with u,v � V \ VN,

H otherwise.
	
�9�
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Again, H is a number higher than all pd values. To substan-
tiate the definition of �d

t �·� we will first make sure that, if
some v�V \VN gets dry at all, it gets dry at the external CP
pd

x�v� defined in the last section. Indeed, as will be shown in
the remainder of this paragraph, trapped wetting phase blobs
do not cut crucial connections of nonwetting phase between
v and the nonwetting phase reservoir. Until the first blob b1

of wetting phase is trapped, drainage proceeds exactly as
described before in Sec. IV. When b1 is cut off, the pd

x values
of all vertices in b1 are higher than the pd

x values of all
vertices around b1. Here, the vertices around b1 are the ones
not in b1 but adjacent to a vertex in b1. As the external CP
continues to increase, and as long as b1 remains the only
trapped blob, a vertex w1 not in b1 still gets dry at pd

x�w1�.
Otherwise, the unique path � from uN to w1 on the MWST
of G+ with respect to �d would go through b1. This is im-
possible, however, since the pd

x values increase monotoni-
cally, as one walks from uN to w1 along �; a contradiction to
the pd

x values in b1 being higher than those around b1. Along
the same lines one can show that, when a second blob b2 is
formed, a vertex w2 neither in b1 nor in b2 still gets dry at
pd

x�w2�, and so on.
From the description of drainage at the beginning of this

section, the fact that the external CP is monotonically in-
creasing during drainage, and the note above, it follows that
a vertex v�V \VN gets dry if and only if at the external CP
pd

x�v� there exists a path from v to the wetting phase reser-
voir such that all vertices along the path are wet, i.e.,
have a pd

x value �pd
x�v�. In other words, v gets dry if and

only if H−MinMax�d
t �vW ,v�� pd

x�v�. The value H

−MinMax�d
t �vW ,v� thus is the critical external CP for the

wetting phase to escape from the pore body bv represented
by v. Nonwetting phase is trapped in bv, if and only if H
−MinMax�d

t �vW ,v�� pd
x�v� �see Fig. 3�d��. As in the previ-

ous section, we can determine all wetting phase blobs by
computing the H−MinMax�d

t �vW ,v� values for all v�V \VN

in a single recursive traversal of the MWST of G+ with re-
spect to �d

t starting at uW.

VI. SIMULATION OF IMBIBITION WITH NEITHER
TRAPPING NOR SNAP-OFF

For the time being we take neither trapping nor snap-off
into account. In a real experiment on quasistatic primary im-
bibition one starts with a nonwetting phase saturated porous
medium at a high external CP and then gradually and slowly
decreases the external CP. Simulating quasistatic primary im-
bibition through ISP amounts to assuming that, if the exter-
nal CP has decreased to an intermediate value px, a pore
body bv represented by a vertex v�V \VW has been imbibed
at some point during the pressure drop to px, if and only if
there exists a path between a vertex in VW and v such that the
minimal pi value of the vertices along the path and not in VW
is �px. Note that the pi values are assumed at the vertices of
G+. By extending the function pi�·� to edges via

pi�e�: = �
min�pi�u�,pi�v�� for all e = �u,v�

with u,v � V \ VW,

pi�v� for all e = �u,v�
with u � VW,v � V \ VW,

	 �10�

we get that bv has been imbibed, if and only if there exists a
path between a vertex in VW and v such that the minimal pi
value of the edges along the path is �px. In other words, bv
has been imbibed if and only if there exists a path between a
vertex in VW and v such that the maximal H− pi value of the
edges along the path is �H− px. This, in turn, is equivalent to
saying that the external CP at which bv is actually
imbibed—we denote it by pi

x�v�—is given by H− pi
x�v�

=MinMax�i
�uW ,v�, where

�i�e�: = �
0 if e � EW,

H if e � EN or e = �u,v�
with u,v � VW,

H − pi�e� for all other edges e
	 �11�

�for an example see Fig. 4�. As for pd
x in Sec. IV, all H− pi

x

values, and thus all pi
x values �see Fig. 5�a��, can be obtained

through a recursive traversal of the MWST of G+ with re-
spect to �i, this time starting at uW.

VII. SIMULATION OF IMBIBITION WITH TRAPPING
AND SNAP-OFF

As in Sec. V, we call a vertex v�V dry �wet�, if the pore
body represented by v is filled with nonwetting �wetting�
phase. We first focus on a single edge e at the interface of the
two fluid phases at some time during imbibition. Let e
= �u ,v��E, let u �v� be wet �dry�, and let px be the external
CP. Then, v gets wet if and only if �1� pi�v�� px, and �2�
there exists a path from v to the nonwetting phase reservoir
along which nonwetting phase can escape, i.e., all vertices
along the path are dry, and none of the pore throats repre-
sented by an edge on the path has been closed due to snap-
off. Here, we assume that snap-off in the pore throat repre-
sented by the edge e= �u ,v��E, with u ,v both being dry,
occurs if pd�e� /2	 px �5,20�—a simpler approach than, for
example, the one in �8�. We will take into account that snap-
off contributes to the trapping of nonwetting phase blobs, but
we require that imbibing wetting phase needs to be con-
nected to the wetting phase reservoir �no imbibition originat-
ing from wetting phase blobs occupying single pore throats
due to snap-off�.

If applied iteratively while the external CP is decreasing,
the above criterion for a vertex getting wet amounts to a
simulation of imbibition that includes trapping and snap-off.
The following definition of the weight function �i

t�·� ensures
that the MWST of G+ with respect to �i

t�·� �see Fig. 5� cap-
tures the escape of the nonwetting phase:
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�i
t�e�: = �

pi
x�v� if e = �uN,v� ,

max�pi
x�u�,pi

x�v�,pd�e�/2� if e = �u,v�
with u,v � V \ VW,

H otherwise.
	

�12�

To see how the MWST of G+ with respect to �i
t�·� captures

the escape of the nonwetting phase, note that, if some
v�V \VW gets wet at all �i.e., no nonwetting phase is trapped
in the pore body represented by v�, it gets wet at the external
CP pi

x�v� defined in the last section. This follows as in Sec.
V.

From the description of imbibition at the beginning of this
section, the fact that the external CP is monotonically de-
creasing during imbibition, and the note above, it follows

that a vertex v�V \VW gets wet if and only if at the external
CP pi

x�v� there exists a path from v to the nonwetting phase
reservoir such that �1� all vertices along the path are dry, i.e.,
have a pi

x value �pi
x�v� and �2� none of the edges along the

path have been closed due to snap-off, i.e., all edges along
the path have a pd�e� /2 value �pi

x�v�. In other words, v gets
wet if and only if MinMax�i

t�vN ,v�� pi
x�v�. The value

MinMax�i
t�vN ,v� thus is the critical external CP for the non-

wetting phase to escape from the pore body bv represented
by v. Nonwetting phase is trapped in bv, if and only if
MinMax�i

t�vN ,v�	 pi
x�v� �see Fig. 5�d��. As in the previous

sections, we can compute the MinMax�i
t�vN ,v� values for all

v�V \VW in a single recursive traversal of the MWST of G+

with respect to �i
t starting at uN.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we have shown that not only IBP, but also
ISP, can be done through constructing MWSTs of the pore
network and traversing them. When simulating drainage
through IBP we took trapping into account, and when simu-
lating imbibition through ISP we took trapping and snap-off
into account.

This was possible through �1� mapping ISP onto IBP us-
ing Eq. �10� and �2� calculating two MWSTs for drainage
and two MWSTs for imbibition. In both cases, the second
MWST was one with respect to new weights derived from
the weights computed during a traversal of the first MWST,
which does not account for trapping and snap-off.

Our method for modeling IBP and ISP �with and without
trapping and snap-off� can be applied to any kind of pore
network in any spatial dimension. Simulations can be per-
formed in lattice networks, with randomly assigned resis-
tance values for the bonds and sites, as in the seminal papers
by Chandler et al. �21� and Wilkinson and Willemsen �3�.
Simulations on network lattices are, for example, important
for studying universality principles �22,23,4,16� in the gen-
eral percolation-theoretical sense �24,25�. Our method, how-
ever, also works for irregular pore networks that represent
real porous media �26–32�.

Our method also implies that the time complexity of IBP
and ISP, even when trapping and snap-off are included, is
O(m��m ,n�), where m is the number of network edges, n is
the number of network vertices, and ��· , ·� denotes the in-
verse Ackermann function �33�—a bound considerably lower
than O�m log m� reported in �4,32�. Indeed, according to
�34�, O(m��m ,n�) is the time complexity to compute a
MWST, and a traversal of a MWST takes only O�n�. Since
��· , ·� is practically constant, one may say that IBP and ISP,
even when trapping and snap-off are included, can now be
done in linear time with respect to the number of network
edges. This is optimal since, in any case, one needs to go
through all edges.

Due to the improved computational complexity,
O(m��m ,n�) instead of O�m log m� �16�, one can now run IP
on larger networks than before. This ability could lead to
improved estimates of the fractal dimensions of sample span-
ning clusters, backbones, and minimal paths �4,16,17�. Fi-
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FIG. 5. Imbibition with trapping and snap-off. �a� The graph
G+= �V+ ,E+� from Fig. 1�a�. The numbers indicate the pi

x�·� values.
�b� The numbers indicate the �i

t values of the edges. �c� MWST of
G+ with respect to �i

t�·� �escape tree�. �d� Critical escape pressures.
The vertices with trapped nonwetting phase are emphasized. These
are the vertices at which the critical escape pressure is higher than
the pi

x value.
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nally, the reduction of IP to MWST might provide new in-
sights into the universality classes of IP along the lines of
Dobrin and Duxbury �35�.
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